
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 260 (2003) 577–588

Letter to the Editor

Analysis of jump phenomena using Pad!e approximations

Igor V. Andrianova, Jan Awrejcewiczb,*
a Institut f .ur Allgemeine Mechanik, RWTH Aachen, Templergraben 64, D-52056 Aachen, Germany

b Department of Automatics and Biomechanics, Technical University of Ł !od!z, 1/15 Stefanowskiego St.,

90-924 Lodz, Poland

Received 24 July 2001; accepted 17 May 2002

1. Introduction

An investigation of jump (blow-up) phenomena is of a particular importance from both
theoretical and practical points of view. We would only like to address the combustion problem,
various problems in biology (an increase of population), buckling of construction and so on [1–6].
In order to understand and explain the mentioned phenomena, the various asymptotical methods
are used, and in particular, the matched asymptotic procedure [1,3], geometric asymptotics [4],
Whitham method [6,7], or boundary layers approach [8].

As it has been shown in Ref. [2], the jump phenomena can often be described using a concept of
rational functions. This observation immediately suggests applying Pad!e approximations (PAs)
[9–11]. For instance, PAs have been so successfully applied in the theory of solitons, that even a
new term called ‘‘padeon’’ has been created [12–16]. In fact, the ‘‘direct Hirota method’’ used for
construction of solitons has its source in the application of PA [17,18]. Note that PA can be
successively applied also in many other cases, where the so-called solution localization appears.

Consider PAs which allow one to perform, to some extent, the most natural continuation of the
power series. Let

FðeÞ ¼
XN
i¼0

Ciei;

FmnðeÞ ¼
Xm

i¼0

aiei 1 þ
Xn

i¼1

biei

 !
;

where the coefficients ai; bi are determined from the following condition: the first ðm þ nÞ
components of the expansion of the rational function FmnðeÞ in a Maclaurin series coincide with
the first components of the series FðeÞ: Then Fmn is called the PA½m; n�: The set of Fmn functions
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for different m and n forms the Pad!e table. The diagonal PAs ðm ¼ nÞ are most widely used in
practice. Note that a PA is unique when m and n are specified.

To construct the PAs, it is necessary to solve only systems of linear algebraic equations.
Comparing the coefficients of e0; e1; e2;y; emþn; the system of linear algebraic equations can be
obtained from the following equality:

ðc0 þ c1eþ?þ cmþnemþnÞ 1 þ
Xn

i¼1

biei

 !
¼
Xm

i¼0

aiei: ð1Þ

PAs perform a meromorphic continuation of the function given in the form of the power series,
and for this reason, it allows one to achieve success in the cases where analytic continuation
cannot be applied. If the PA sequence converges to a given function, then the roots of its
denominators tend to singular points. It allows one to determine the singularities and then to
perform the analytic continuation.

For instance, if the truncated series has the form

f ðeÞ ¼ 1 þ aeþ be2 þ?;

then diagonal PA is governed by the formula

PA½1; 1� ¼
a þ ða2 � bÞe

a � be
: ð2Þ

Using only two terms of the series, the following formula can be used:

PA½0; 1� ¼
1

1 � ae
: ð3Þ

Now consider as an example the following boundary value problem:

y00 � y þ 2y3 ¼ 0; ð4Þ

yð0Þ ¼ 1; ð5Þ

yðNÞ ¼ 0; ð6Þ

which has the exact solution

y ¼ coshðxÞ: ð7Þ

A solution in the form of a Dirichlet series may be written as

y ¼ Ce�xjðxÞ; C ¼ const; ð8Þ

where

jðxÞ ¼ 1 � 1
4 C2e�2x þ 1

16 C4e�4x þ? : ð9Þ

Applying formula (2) to truncated series (9), and assuming

a ¼ 1
4

C2e�2x; b ¼ 1
16

C4e�4x; e ¼ e�2x

from Eq. (8), one obtains

y ¼
4C

4ex þ C2e�x
: ð10Þ
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Observe that solution (10) satisfies decaying conditions (6). From condition (5) one finds C ¼ 2
and solution (10) overlaps with exact solution (6).

In order to illustrate an application of PA to blow-up problems, consider the following model
problem:

dx

dt
¼ ax þ ex2; xð0Þ ¼ 1;

where 0oe5a51:
The exact solution to this boundary value problem has the form

xðtÞ ¼
a expðatÞ

ðaþ e� e expðatÞÞ
: ð11Þ

For t-ln½ðaþ eÞ=e�; the solution goes to infinity (blow-up of the solution appears). A regular
asymptotics of the form

xðtÞ ¼ expðatÞCðtÞ; ð12Þ

where

CðtÞ ¼ 1 � ea�1 1 � expðatÞ½ � þ? ð13Þ

cannot describe the mentioned phenomenon. Using PA (3) for truncated series (13), and taking
a ¼ a�1½1 � expðatÞ�; one obtains exact solution (11).

2. Analytical analysis

The combustion model is governed by

’y ¼ y2ð1 � yÞ; ð14Þ

yð0Þ ¼ e: ð15Þ

This problem will be investigated for e51:
Numerical simulation of Eqs. (14) and (15) using the Runge–Kutta fourth order algorithm is

shown in Fig. 1 for different values of e: Observe that approximately for t	; a sudden jump of
solution occurs which possesses the two following properties. First, decreasing e; the solution
shape yðtÞ approaches a unit step function form. Second, to the left of value t	; the function yðtÞ
approaches almost horizontally the value of zero, whereas for t > t	; this function is also
horizontal and close to 1 for sufficiently small e (see Fig. 1(c)).

The aim of this paper is to predict an occurring threshold for t ¼ t	 and to obtain analytical
solutions for tot	 (zone I) and t > t	 (zone II) by matching them at the point t ¼ t	:

First the following regular asymptotic expansion is used:

y ¼
XN
i¼0

eiyi: ð16Þ
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Substituting Eq. (16) into Eqs. (14) and (15), the problem is reduced to a set of initial problems:

’y0 ¼ y2
0ð1 � y0Þ; ð17Þ

y0 ¼ 1; ð18Þ

’y1 ¼ 0; y1 ¼ C 
 const:; ð19Þ

’y2 ¼ y2
1; y2 ¼ C2t; ð20Þ

’y3 ¼ y3
1 þ 2y0y2; y3 ¼ C3ðt � 1Þt; ð21Þ

’y4 ¼ �3y2
1y2 þ y2

2 þ 2y1y3; y4 ¼ 5C4ðt � 1Þt; ð22Þ

Fig. 1. Numerical solutions to Eq. (1) for different initial values: (a) e ¼ 0:1; (b) e ¼ 0:0:1; (c) e ¼ 0:001:
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’y5 ¼ �3y1y2
2 � 3y2

1y3 þ 2y2y3 þ 2y1y4; y5 ¼ C5tð14t2 � 21t þ 3Þ; ð23Þ

’y6 ¼ �y3
2 � 6y1y2y3 þ y2

3 � 3y2
1y4 þ 2y2y4 þ 2y1y5; y6 ¼ 14C6t3ð3t2 � 6t þ 2Þ: ð24Þ

The results have been obtained using the ‘‘Mathematica’’ package (see Appendix A).
Eq. (16) has the solution y0 ¼ 1; which corresponds to a being sought function for t-N: This

part of the solution will be taken into further analysis. The constant C is defined from initial
condition (14)

y1 þ ey2 þ e2y3 þ? ¼ 1 for t ¼ 0;

which gives C ¼ 1:
Now apply the PA to show that using this approximation gives the possibility to predict the

observed numerical jump of the solution yðtÞ occurring for t ¼ t	 with high accuracy. First the PA
is briefly introduced and calculated ‘‘by hand’’, whereas higher order PA will be calculated using
the PA build using ‘‘Mathematica’’. The function y will be approximated by the following rational
one:

y1 þ ey2 þ e2y3 þ e3y4 þ? ¼
y1 þ a1eþ a2e2 þ a3e3 þ?
1 þ b1eþ b2e2 þ b3e3 þ?

; ð25Þ

where ai and bi are unknown coefficients.
According to the construction of the PA, expression (25) is transformed into the form

ðy0 þ ey1 þ e2y2 þ?Þð1 þ b1eþ b2e2Þ ¼ y0 þ a1eþ a2e2 þ?:

Comparing the terms of the same powers of e; one obtains

e0 : y1 ¼ y1;

e1 : y1b1 þ y2 ¼ a1;

e2 : y1b2 þ y2b1 þ y3 ¼ a2;

e3 : y1b3 þ y2b2 þ y3b1 þ y4 ¼ a3: ð26Þ

Observe that the fraction to the right-hand side of Eq. (25) is finite and a number of unknowns
a1;y; an; b1;y; bm are equal to m þ n: Therefore, m þ n equations are taken from the infinite
number of equations generated by series (16).

From Eq. (26) one gets

a1 ¼ C; a2 ¼ C2; b1 ¼ �Cðt � 1Þ ð27Þ

and PA[2,1] has the form

PA½2; 1� ¼ Ce
1 þ Ce

ð1 � Cðt � 1ÞeÞ
:

Here by PA½m; n� is denoted the PA having (m þ 1) terms in the numerator, and having (n þ 1)
terms in the denominator. This result has been verified using ‘‘Mathematica’’ (see Appendix B),
where in addition, C ¼ 1 has been obtained.
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In a similar way to that corresponding to zone I, one can also construct different PA. They have
the following forms:

PA½2; 1� ¼
eð�2 þ etÞ

2 þ te½�3 þ ð2 þ tÞe�
;

PA 3; 1½ � ¼
e½2 þ ð�2 � eð3 þ ð2 þ tÞeÞÞ�

2 þ t½�2 þ ð�5 þ 2te�
:

The threshold value t	 is found by a condition that the denominators are equal to zero. The
following analytical values have been found:

t	½2;1� ¼ �1 þ
1

e
; ð28Þ

t	½2;2� ¼
3 � 2eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4eðe� 3Þ

p
2e

; ð29Þ

t	½3;1� ¼
2 þ 5eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ eð4 þ 25eÞ

p
4e

: ð30Þ

The numerical values of t	 for three different values of e are shown in Table 1.
Observe that in the case of e ¼ 0:1; there is an imaginary value of t	½2;2� for Eq. (29), and also for

P[2, 2] and P[3, 1], Eqs. (29) and (30) include only one solution (in fact, there exist two real
solutions).

Therefore, the use of PA gave explanations to the observed numerical jumps of the yðtÞ solution
(see Fig. 1).

Now construct a solution in zone II ðt > t	Þ: Since in this zone the solution is close to 1, the
following change of variables is introduced:

y ¼ 1 þ *x ð31Þ

and from Eq. (14) one obtains

’*x ¼ � *xð1 þ *xÞ2; ð32Þ

where *x51: The further procedure is similar to the case related to zone 1. It is efficient to
introduce an artificial small parameter d: First, use this parameter for asymptotical splitting, and

Table 1

Numerical values of t	 obtained using PA

Equation number e

0.1 0.01 0.001

(18) 11.0 101.0 1001.0

(19) x 102.08518 1002.008

(20) 11.640965 101.51492 1001.5015
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finally take d ¼ 1: Then, apply the classical perturbation method assuming the solution

*x ¼ dx0 þ d2x1 þ d3x2 þ?: ð33Þ

Substituting Eq. (33) to Eq. (32), one gets the following set of differential equations:

dx0

dt
¼ �x0; x0 ¼ e�ðt�t0Þ;

dx1

dt
¼ �x1 � 2x0; x1 ¼ 2e�2ðt�t0Þ;

dx2

dt
¼ �x2 � x3

0 � 4x0x1; x2 ¼ 9
2

e�3ðt�t0Þ;

dx3

dt
¼ �x3 � 3x2

0x1 � 2x2
1 � 4x0x2; x3 ¼ 32

8
e�4ðt�t0Þ;

dx4

dt
¼ �x4 � 3x0x2

1 � 3x2
0x2 � 4x1x2 � 4x0x3; x4 ¼ 625

24 e�5ðt�t0Þ:

The value at time instant t0 defines a temporarily unknown constant, which will be estimated
during a matching process. The values of t	 and t0 obtained using PA are shown in Table 2.

Now, having two solutions %y and *y which are valid for zones I and II, correspondingly, they will
be matched. The matching conditions have the form

%y ¼ *y;
d %y

dt
¼

d *y

dt
for t ¼ t0:

3. Numerical results

The obtained results are presented in the following figures, where a continuous curve
corresponds to the exact (numerical) solution, a dashed curve corresponds to an asymptotic series,
and a dense-dashed curve corresponds to a PA for e ¼ 0:1; 0.01; 0.001. Fig. 2 includes the

Table 2

Values of t	 and t0 obtained using PA

Pad!e approximations Time constants e

0.1 0.01 0.001

PA[2,1] t	 24.945 945.722 31110.408

t0 24.213 944.100 31107.647

PA[3,1] t	 16.514 424.669 0641.779

t0 16.299 424.188 9640.571

PA[2,2] t	 16.514 424.669 9641.779

t0 16.299 424.188 9640.571

Table 2

Values of t	 and t0 obtained using PA
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approximation PA[2,1], Fig. 3 includes the approximation P[3,1], whereas Fig. 4 includes the
approximation PA[2,2].
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Appendix A. Analytical solution using the classical perturbation technique

ya ¼ ey0 þ e2y1þ e3y2 þ e4y3 þ e5y4 þ e6y5;
y0p=Coefficient[ya2(1�ya)//Expand, e1]
0

Fig. 2. Numerical, asymptotical and PA solutions for different values of e: (a) 0.1; (b) 0.01; (c) 0.01 (PA[2,1]).
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y1p=Coefficient[ya2(1�ya)//Expand, e2]
y2

0

y2p=Coefficient[ya2(1�ya)//Expand, e3]
�y3

0 þ 2y0y1

y3p=Coefficient[ya2(1�ya)//Expand, e4]
�3y2

0y1 þ y2
1 þ 2t0y2

y4p=Coefficient[ya2(1�ya)//Expand, e5]
�3y2

0y2
1 � 3y2

0y2 þ 2y1y2 þ 2y0y3

y5p=Coefficient[ya2(1�ya)//Expand, e6]
�y3

1 � 6y0y1y2 þ y2
2 � 3y2

0y3 þ 2y1y3 þ 2y0y4

y0=C

y1p

C
C2

y1 ¼
R
y1p dt==Simplify

Fig. 3. Same as in Fig. 2 (PA[3,1]).
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y2p ¼ y2p==Simplify
C2t
C3ð�1 þ 2tÞ
y2 ¼

R
y2p dt==Simplify

y3p ¼ y3p==Simplify
C3ð�1 þ tÞt
C4tð�5 þ 3tÞ
y3 ¼

R
y3p dt==Simplify

y4p ¼ y4p==Simplify

C4 �
5t2

3
þ t3

� �
C5tð3 � 13t þ 4t2Þ
y4p ¼

R
y4p dt==Simplify

1
6

C5t2ð9 � 26t þ 6t2Þ

Fig. 4. Same as in Fig. 2 (PA[2,2]).
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Appendix B. Padé[2,1]

ooCalculus ‘Pade’;

Pade [ya, {e, 0, 2, 1}]//FullSimplify

�
Ceð1 þ CeÞ

�1 þ Cð�1 þ tÞe
Computation of constant C

Solve �
Ceð1þ CeÞ

�1þ Cð�1þ tÞe

�	 

� t-0f g

�
¼ e; C

�
{{C-1}}
Point of a jump
Solve½�1þ Cð�1þ tÞe ¼ 0; t�= � C-1f g

t-�
�1 � e

e

� � 

�
�1� e

e
= � e-0:1f g

11.

�
�1� e

e
= � e-0:1f g

101.

�
�1� e

e
= � e-0:1f g

1001.
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